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A CUSS OF OPTIMAL-ORDER ZERO-FINDING METHODS 
USING DERIVATIVE EVALUATIONS 

Richard P. Brent 

Computer Centre, 
Australian National University, 

Canberra, A.C.T. 2600, Australia 

1.  INTRODUCTION 

It is often necessary to find an approximation to a 

simple zero C of a function f , using evaluations of f and 

f' . In this paper we consider some methods which are 

efficient if f' is easier to evaluate than f . Examples of 

such functions are given In Sections 5 and 6. 

The methods considered are stationary, multipoint, iter- 

ative methods, ''without memory" in the sense of Traub [64], 

Thus, it is sufficient to describe how a new approximation 

(x.) is obtained from an old approximation (x0) to C . 

Since we are interested in the order of convergence of differ- 

ent methods, we assume that f is sufficiently smooth near 

C , and that x0 is sufficiently close to C . Our main 

result is: 

Theorem 1.1 

There exist methods, of order 2v 

at ion of f and v evaluations of f 

which use one evalu- 

for each iteration. 

By a result of Meersman and Wozniakowski, the order 2v 

is the highest possible for a wide class of methods using the 

same information (i.e., the same number of evaluations of f 

and f' per iteration): see Meersman [75]. The "obvious" 

* 
This work was supported In part by the Office of Naval Re- 
search under Contract K0014-67-0314-0010, NR 044-422 and by 
the National Science Foundation under Grant GJ 32111. 
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interpolator/ methods have order v + 1 , but the optimal or- 

der 2v may be obtained by evaluating f at the correct 

points. These points are determined by some properties of 

orthogonal and "almost orthogonal" polynomials. 

If v + 1 evaluations of f are used, Instead of one func- 

tion evaluation and v derivative evaluations, then the opti- 

mal order Is 2 for methods without memory (Kung and Traub 

[73,74], Woznlakowskl [75a,b]), and 2^ for methods with 

memory (Brent, Wlnograd and Wolfe [73]). Thus, our methods 

are only likely to be useful for small v or if f' Is much 

cheaper than f. 

Special Cases 

Our methods for v ^ 3 appear to be new. The cases v ■ 1 

(Newton1 3 method) and v ■ 2 (a fourth-order method of Jarratt 

[69]) are well known. Our sixth-order method (with v " 3) 

Improves on a fifth-order method of Jarratt [70], 

Generalizations 

Generalizations to methods using higher derivatives are 

possible. One result is: 

Theorem 1.2 

For m>0, niO, and k satisfying m + 1 ^ k > 0, 

there exist methods which, for each iteration, use one evalu- 

ation of f,f\...,f(m\    followed by n evaluations of f^ 

and have order of convergence m + 2n + 1 . 

The methods described here are special cases of the 

methods of Theorem 1.2 (take k = m = 1 , and v = n + 1) . 

Since proof of Theorem 1.2 is given in Brent [75], we omit 

proofs here, and adopt an informal style of presentation. 

Other possible generalizations are mentioned in Section 7. 

i 
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2.  MOTIVATION 

We first consider methods using one evaluation of f , 

and two of f , per iteration. Let x0 be a sufficiently 

good approximation to the simple zero £ of f , f0 = f(x0), 

and fi » ^'OtrO • Suppose we evaluate ^'CXQ) , where 

xo :s x0 " af0/f0 ' 

and a is a nonzero parameter. Let Q(x) be the quadratic 

polynomial such that 

Q(x0) = f0 , 

Q'(x0) = f• , 

and 
Q'(x0) = f'(x0) . 

and let x- be the zero of Q(x) closest to x0 . Jarratt 

[69] essentially proved: 

Theorem 2.1 

X! - C = 0(|x0 - ?|
p) 

as x0 -»• C » where 

/ 3 if a ?< 

' I 4 if a = 

2/3 , 

2/3 . 

Thus, we choose q « 2/3 to obtain a fourth-order 

method. The proof of Theorem 2.1 uses the following lemma: 

Lemma 2.1 

2 3 If   P(x) » a + bx + ex    + dx      satisfies 

P(0) = P'CO) = P,(2/3) = 0 , 

then    P(l) = 0 . 

Applying Lemma 2.1, we may show that (for   a = 2/3) 

f(xN) - Q(xN)  = 0(64)  . 

3. 
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where 

^ ' x0 " f0^f0 

is the approximation given by Newton's method, and 

6" I Vf6l ' IXN - xol • 
Now , 

VN 4 - 0(6') , 

and 
f'(x) - Q'(x) = 0(6') 

for x near x^ , so 

IfUj)! - If^) - Q(x1)| 

$ ^(x,^) - Q(xN)| + |f(C) - Q'^HXJJ 

for some C between xN and x. . Thus 

IfCx^l = 0(64) + 0(6
2.62) = 0(64) , 

Xj - ? » 0(|f(x1)|) = 0(6
4) = 0(|x0 - C|4) 

and 

3.  A SIXTH-ORDER METHOD 

To obtain a sixth-order method using one more derivative 

evaluation than the fourth-order method described above, we 

need distinct, nonzero parameters, a. and ou , such that 

P(0) = P'tO) = P'tctj) = P'to^) = 0 

implies    P(l) = 0 , for all fifth-degree polynomials 

P(x) = a + bx +  ...  + fx    . 

Thus, we want the conditions 

and 

to imply 

2a*c + ... + 5a.f = 0 

2a2c + ... + Souf = 0 

c + ...  + f = 0  . 

4. 
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Equivalently, we want 

2a 

rank 

1 3a1  4a 

2 

5a 

2a0  3a„  4a„  5a = 2 , 

i.e., 

rank 1 

1/2 

a. 

a 

a 

2 

1/3 

1 

2 
2 

1/4 

a 

a 

1 

3 
2 

1/5 

a = 2 , 

i.e., for some w. and w2 , 

(3.1) w^J + w^J = l/(i + 2) 

for 0 $ i $ 3 . 
1 . 

Since l/(i + 2) = / x^^'xdx , we see from (3.1) that ^ 

and a. should be chosen as the zeros of the Jacobi poly- 

nomial, G2(2, 2, x) = x - 6x/5 + 3/10 , which is orthogonal 

to lower degree polynomials, with respect to the weight func- 

tion x , on [0, 1] . 

Let Xi = x0 - a.yf' , xN = x0 - yf- , 6 = |f0/f'|, 

and let Q(x) be the cubic polynomial such that 

and 

for i=l,2. Then 

Q(xu) =f0 , Q'(x0) =f' , 

Q'fri) = f^yp 

f(x) - Q(x) = 0(64) 

for x between x« and xN , but 

f(xN) - Q(xN) = 0(6°) , 

because of our choice of a. and a2 as zeros of 62(2, 2,x) 

5. 
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(This might be called "superconvergence":    see de Boor and 
Swartz  [73].) 
A Problem 

Since 
^ - Xj = 0(6Z) 

and 

f'Cx)  - Q'Cx) = OCÖ"5) 
for   x   near   x*, , proceeding as above gives 

IfCxpl « 0(66) + 0(ö3.62) = 0(65)  . 

so the method is only of order five, not six. 

A Solution 

After evaluating f'Cy-) , we can find an approximation 
- 3 
JL s £ + 0(6 ) which is (in general) a better approximation 

to C than is x,. . From the above discussion, we can get a 

sixth-order method if we can ensure superconvergence at TL 

rather than x^ . Define oL by 

51(XN " V = al(xN " V ' 
In evaluating f at Xi = x0 + ^(jL - x0), we effectively 

used a- = a- + 0(6) instead of ot- , so we must perturb a2 

to compensate for the perturbation in a. . 

From (3.1), we want (L such that, for some w- and 

w 
2 ' 

(3.2) Wlal + W2a2 * ^1 + ^ 

for 0 < i < 2 . Thus 

rank 

1 51 
är 

1 ä2 *l 
1/2 1/3 1/4 

= 2 

6. 
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which gives 

Since 

»2 - (3 - 45^/(4 - eäp - a2 + 0(6) 

w. » w. + 0(6) 

V*! + *2*2 '  1/5 + 0(6) 
for j»l,2, we have 

(3.3) 

(Compare (3.1) with i « 3.) If we evaluate f at 

y- * XQ + «-(äL - x0) , and let Xj be a sufficiently good 

approximation to the appropriate zero of the cubic which fits 

the data obtained from the f and f* evaluations, then 

(3.2) and (3.3) are sufficient to ensure that the method has 

order six after all. 

4.  METHODS OF ORDER 2v 

In this section we describe a class of methods satisfying 

Theorem 1.1. The special cases v = 2 and v = 3 have been 

given above. 

It is convenient to define n = v The Jacobi poly- 

nomial G (2, 2,  x) is the monic polynomial, of degree n , 

which is orthogonal to all polynomials of degree n - 1 , with 

respect to the weight function x , on [0, 1]. Let a.,...,a 

denote the zeros of G (2, 2, x) in any fixed order. We des- 

cribe a class of methods of order 2(n + 1) , using evaluations 

of f(x0) , f'(x0) , and f,(y1),...,f'(yn) , where the 

y  are determined during the iteration. points y 

The Methods 

l,,,,,'n 

f0 = £(x0) and 1. Evaluate 

2. If f0 = 0 set 

3. For i=l,...,n do steps 4 to 7. 

fj-f(x0) . 

xl = x0 and stop, else set 6 = |f0/f'j. 

7. 
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8. 

f 4. 

8. 

5. 

7. 

Let   p.    be the polynomial, of minimal degree, agree- 

ing with the data obtained so far.    Let   z.    be an 

approximate zero of   p.   , satisfying    z. = xn + 0(6) 
i+2 i       u 

and   p. (z.) =0(6     )  .    (Any suitable method, e.g. 

Newton's method,may be used to find    z.  .) 

Compute   a.   . = a.^  .  (z.^ - x0)/(zi - x0) 

j=l,...,i-l.    (Skip if   i = 1.) 

for 

6.  Let q. be the monic polynomial, of degree 

n + 1 - i 
ri-l 

•ni(x"aii) 

= 0   for all polynomials    P    of   degree   n - i 

, such that    7 P(x) q. (x) xdx 

(The existence and uniqueness of   q.    may be shown 

constructively:    see Brent   [75].)    Let   a.  .    be an 
1,1 

approximate zero of q. , satisfying a. . = a. + 0(6) 

and q^a..) = 0(6i+1). 

Evaluate f'ty.) , where 

y. = xn + a. . (z. - x») . 7i   0   i,iv i   0'' 

Let   p    ,    be as at step 4, and    x.    an approximate zero 

of 

0(62n¥*')   . 

pntl  ' satisfyin8   xi = xo + 0(,S)    and   pn+l^xl^ s 

n+3> 

Asymptotic Error Constants 

The asymptotic error constant of a stationary zero- 

finding method is defined to be 

* = x^C (!ti " «/^o «' 

where p is the order of convergence.  (Since p is an 

integer for all methods considered here, we allow K to be 

signed.) Let K  be the asymptotic error constant of the 

methods (of order 2v) described above. The general form of 

K  is not known, but we have 

MM r   '„„li^nn^^^j—  ..■..-.....■■..J....    . ... ^.-.^      i    iiniriiiiiiiiiiiiniMf inn'Tii- in 
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9. 

and 

25(9 - 44a3 + 42013)(J)4<J)5V/367S  , 

where ,., 
r(l) 

Kj = (J>2  , 

K2 = (J>4/9 - (J>2(()3 , 

K3 = (J)6/100 +  (1 - Sap^/lO +  (Saj - 2)^/5 . 

K4 = |3<j>8 - 214»2(j)7/Cl - ap + 9[35(1 - a3)-3/(l - ajftfa 

} 
* - f7W vi    ITFU) * 

5.      RELATED NONLINEAR RUNGE-KUTTA METHODS 

The ordinary differential equation 

(5.1) dx/dt = g(x)  ,    x(t0)  = x0 , 

may be solved by quadrature and zero-finding: to find 

x(t0 + h) we need to find a zero of 

f(x) = / -*L. - h . 
xo 

Note that f(x0) « - h is known, and f'OO = l/g(x) may be 

evaluated almost as easily as g(x) . Thus, the zero-finding 

methods of Section 4 may be used to estimate x(t0 + h) , then 

x(t0 + 2h) , etc. When written in terms of g rather than f, 

the methods are seen to be similar to Runge-Kutta methods. 

For example, the fourth-order zero-finding methods of 

Section 2 (with x.. an exact zero of the quadratic Q(x) ) 

gives: 

g0 = g(x0) . 

A = hg0 , 

g1  = g(x0 + 2A/3) , 

 llfMlil'tiiBiiili«MllirtiMaiiiiiliiiiiiiiri r 1'    a MM *-'■  ■iniM^aaiiiiilMMilija.MMa»^-^ ^^-...--.., .,..,-..,  ., ,■,..,.  
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and 

(5.2) xi = xo + 2A/[i + (38o/gl " ^   ' 

Note that  (5.1) is nonlinear in   g»    and    g1   , unlike the 
usual Runge-Kutta methods.    (This makes it difficult to 

generalize our methods to systems of differential equations.) 
Since the zero-finding method is fourth-order,    x1  = x(tn + h) 
+ 0(h )  , so our nonlinear Runge-Kutta method has order three 
by the usual definition of order (Henrici  [62]). 

Similarly, any of the zero-finding methods of Section 4 

have a corresponding nonlinear Runge-Kutta method.    Thus, we 
have: 
Theorem S.l 

If   v > 0 , there is an explicit, nonlinear, Runge-Kutta 
method of order    2v - 1  , using   v   evaluations of    g   per 
iteration, for single differential equations of the form (5.1). 

By the result of Meersman and Wozniakowski, mentioned in 
Section 1, the order 2v - 1 in Theorem 5.1 is the best poss- 
ible. Butcher [65] has shown that the order of linear Runge- 
Kutta methods, using v evaluations of g per iteration, is 
at most v , which is less than the order of our methods if 
v > 1 (though the linear methods may also be used for systems 
of differential equations). 

6.      SOME NUMERICAL RESULTS 

In this section we give some numerical results obtained 
with the nonlinear Runge-Kutta methods of Section 5.    Consider 

the differential equation (5.1) with 

(6.1) g(x)  =(27r)Jsexp(x2/2) 

and   x(0)  =0 .    Using step sizes   h = 0.1    and   0.01, we 
estimated    x(0.4)   ,  obtaining a computed value    x.    .    The 

10. 
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11. 

error   e,    was defined by 

e.   » (ZTT)' ? exp(-u /2)du - 0.4 

All computations were performed on a Univac 1108 computer, 

with a floating-point fraction of 60 bits.    The results are 

summarized in Table 6.1.    The first three methods are derived 

from the zero-finding methods of Section 4  (with   v = 2, 3 and 

4 respectively).    Method RK4 is the classical fourth-order 

Rungfc-Kutta method of Kutta [01], and method RK7 is a seventh- 

order method of Shanks [66]. 

Table 6.1;    Comparison of Runge-Kutta Methods 

Method g evaluations 
per iteration Order 

eo.i eo.oi 

Sec. 4 2 3 -9.45'-6 1.49,-7 

Sec. 4 3 5 3.16'-6 -2.47'-ll 

Sec. 4 4 7 3.86'-8 3.69,-lS 

RK4 4 4 l.QS'-S 7.90,-9 

RK7 9 7 -S.IQ'-? -1.67'-13 

More extensive numerical rosults are given in Brent [75]. 

Note that the differential equation (6.1) was chosen only for 

illustrative purposes:    there are several other ways of 

computing quantiles of the normal distribution.    A practical 

application of our methods  (computing quantiles of the incom- 

plete Gamma and other distributions)  is described in Brent 

[76]. 

7.      OTHER ZERO-FINDING METHODS 

In Section 1 we stated some generalizations of our 

methods (see Theorem 1.2).    Further generalizations are des- 

cribed in Meersman  [75].     Kacewicz [75] has considered methods 

which use information about an integral of   f    instead of a 

derivative of   f . 

m MüMimäaämumiuüiiMiiiiä ^sttttJümmit^tlm laaiaiaMflflaigiM&i 
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"Sporadic" methods using derivatives may be derived as in 

Sections 2 and 3.    For example, is there an eighth-order 

method which uses evalup/cions of   f , f'   , f"  , and f"1    at 

x0 , followed by evaluations of   f  , f"    and    f"    at some 

point   y. ?   Proceeding as in Sections   2   and   3 , we need a 

nonzero   a   satisfying 

1        1 1 1     1 

rank 
4        5a 

12      20a 

6a2 

30a2 

7a3 

42a3 

24      60a 120a2 210a3 

which reduces to 

(7.1) 3Sa3 - 84a2 + 70a - 20 

= 3 , 

Since (7.1) has one real root,    a = 0.7449..., an eighth-order 

method does exist.    It is interesting to note that (7.1)  is 

equivalent to the condition 

/ x3(x - a)3dx = 0 . 
0 

As a final example, we consider sixth-order methods 

using f(x0) , f(x0) , ffrj) , and f"'(y2) • (These 

could be called Abel-Goncarov methods.) 

above, we need a. and a2 such that 

Proceeding as 

rank 

2 

0 

1 

6a. 

6 

1 

12a, 

24a, 

20a 

60a 

1 

= 2 

which gives 

(7.2) 60a^ - 80aj + 60a2 - 24a1 + 3 = 0 

12. 
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13, 

and 
a2 = (1 - 6ap/(4 - 12^) 

Fortunately, (7.2) has two real roots, OL = 0.2074... and 

a- = 0.5351...  Choosing one of these, we may evaluate f(xn), 

f' (xj and f'Cyj) , where y*    is defined as in Section 3. 

We may then fit a quadratic to the data, compute the perturbed 

SL , and take 

a2 = (1 - 6aJ)/C4 - 122^ , 

etc., as in Section 3.    It is not known whether this method 

can be generalized, i.e., whether real methods of order    2n , 

using evaluations of   f(x0)   , f'(x0)  . f"^)   ,   ..., f^Cy^j). 

exist for all positive   n . 
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